Phosphorus-31 and carbon-13 nuclear magnetic resonance study of glucose and xylose metabolism in agarose-immobilized Candida tropicalis.
نویسندگان
چکیده
Candida tropicalis can ferment both hexose and pentose sugars. Here, we have used 31P and 13C nuclear magnetic resonance spectroscopy to study the capacity of this yeast species to metabolize glucose or xylose when immobilized in small (< 1-mm-diameter) agarose beads. Immobilized C. tropicalis metabolizing glucose showed rapid initial growth within the beads. A corresponding drop in the intracellular pH (from 7.8 to 7.25) and hydrolysis of intracellular polyphosphate stores were observed. Although the initial rate of glucose metabolism with immobilized C. tropicalis was similar to the rate observed previously in cell suspensions, a decrease by a factor of 2.5 occurred over 24 h. In addition to ethanol, a significant amount of glycerol was also produced. When immobilized C. tropicalis consumed xylose, cell growth within the beads was minimal. The intracellular pH dropped rapidly by 1.05 pH units to 6.4. Intracellular ATP levels were lower and intracellular Pi levels were higher than observed with glucose-perfused cells. Consumption of xylose by immobilized C. tropicalis was slower than was previously observed for oxygen-limited cell suspensions, and xylitol was the only fermentation product.
منابع مشابه
Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis
Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in i...
متن کاملProduction of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis.
Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assa...
متن کاملKinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5).
The specific rates of growth, substrate utilization, and ethanol production as well as yields of biomass and ethanol production on xylose for the recombinant Zymomonas mobilis ZM4(pZB5) were shown to be much less than those on glucose or glucose-xylose mixtures. Typical fermentations with ZM4(pZB5) growing on glucose-xylose mixtures followed two-phase growth kinetics with the initial uptakes of...
متن کاملGlucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus.
Phosphorus and carbon metabolism in Microlunatus phosphovorus was investigated by using a batch reactor to study the kinetics of uptake and release of extracellular compounds, in combination with (31)P and (13)C nuclear magnetic resonance (NMR) to characterize intracellular pools and to trace the fate of carbon substrates through the anaerobic and aerobic cycles. The organism was subjected to r...
متن کاملEnhanced Xylitol Production from Statistically Optimized Fermentation of Cotton Stalk Hydrolysate by Immobilized Candida tropicalis
Cotton (Gossypium hirsutum), which is one of the most abundant crops in the world, is cultivated widely in China, the United States, and Central Asia. The cotton stalk generated with cotton cultivation is an important source of lignocellulosic biomass. In recent years, cotton stalk has received increasing attention from researchers engaged in bioconversion areas, and some high-value products, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 61 4 شماره
صفحات -
تاریخ انتشار 1995